Custom Wiring Harness Installation – Part One

We sent our custom made wiring harness to Rhode Island Wiring Services to have the harness covered with a cloth braid using a royal blue double tracer. The cost was $5.25 per foot with an $8.00 machine set-up fee. We were very pleased with the results. Pardon the messy work bench – it gets that way from time to time!

Cloth Braided Wiring Harness

Previous posts cover the creation and circuit testing of the harness:

A new electrical systemhttps://valvechatter.com/?p=13986

Building and Testing the New Wiring Harness – https://valvechatter.com/?p=14061

JWR Bugeye Wiring Diagrams: https://valvechatter.com/?p=14067

Finally, the time has arrived to install the harness in the car. The first step was to get the end of the harness though the firewall grommet. Not easy with the Deutsch connectors attached, but we got them through.

Harness through the firewall grommet

The next step was to connect the three wires in the harness to the small power supply fuse box. One thirty amp wire feeds the Ignition bank in the fuse box, the other thirty amp wire feeds the accessory bank in the fuse box and the fifteen amp wire feeds the lights bank in the fuse box.

Power supply fuse box

Then it was a matter of connecting the wires to the four banks of fused terminal positions in the Classic Technologies relay/fuse box.

Fuse Box Wiring

We pulled all of the fuses in the two fuse boxes and will add them back one at a time as we test the circuits upon final installation.

fuse installation with ratings

Next, we turned to the group of wires that run to the front of the car along the RH valance. Wiring for the coil, the hydraulic brake switch, the radiator fan, the radiator fan thermostat, the horns and the lights are in this bundle.

Wiring harness on RH Valance

We used stainless steel clips to secure the wires to the valance. A smaller 3/8″ clip will be used to route the capillary tube for the water temperature gauge and sensor.

Stainless steel wiring clips

We made a little bracket to support an 8-pin Deutsch connector at the front of the valance. This connector will mate with an 8-pin bonnet connector to deliver power to the headlights, flashers, running lights and auxiliary driving lights if we decide to mount them.

8 pin Deutsch Connector

We then installed the twin Hella horns and made the wiring connections. This did involve using a four way bullet connector to receive and supply power to both horns. A double spade connector was used to facilitate the wiring connections for the ground wires.

Horns Wiring

Hella horns installed with wiring and custom cover

The next wiring connections to be made were for the wiper motor. Duestch connector “H” is used to connect the wires from the wiper motor to the Wiper Controller mounted behind the dash. The three wires, encased in shrink tubing, come through the firewall. The green wire connects to wiper motor terminal #2 and the green/black wire connects to terminal #1. A black ground wire connects to terminal #3.

Wiper Motor Wiring Connections

The next item to wire was the ignition coil. The yellow/green wire from the harness connects to the (-) terminal of the coil. The white wire from the harness connects to the (+) terminal of the coil.

Ignition Coil Wiring

The heater blower has two black wires from the fan motor. One of those wires is connected to a yellow wire from the harness with a spade connector. The other black wire is ground and is screwed to the chassis.

Heater blower wiring

The hydraulic brake switch is mounted on the RH engine bay valance. A teal green wire and a brown/green wire from the harness connect to the two screw terminals on the switch.

Hydraulic brake switch wiring

The brake pedal brake switch is a custom addition to the Bugeye. Details on the switch and its mounting bracket are highlighted in another post: https://valvechatter.com/?p=14351

Two wires from the harness, a green wire and a dark green/orange wire, come through the grommet in the LH footbox near the dipper switch and connect to the switch at the pedal.

Brake Pedal brake switch wiring

The Dipper switch wiring was completed next. We had a little issue on this because we cut two of the wires a little too short requiring the use of bullet connectors to add length to the wiring to the switch. However, while space was tight, we were able to make all of the necessary connections.

There are three terminals on the dipper switch. A power-in terminal, a low-beam terminal, and a high-beam terminal. One has to look closely to find it but the power-in terminal is marked with an arrow on the switch molding. The blue wire from the harness connects to this terminal via a bullet connector.

The blue/red wire is connected via a bullet connector to a blue/green wire (ran out of blue/red) and then to one of the remaining switch terminals – it doesn’t matter which one.

Three wires connect to the remaining terminal on the switch. The blue/white wire is for high beam operation, the green wire is for the high beam warning light in the speedometer, and the blue/yellow wire is routed to the toggle switch under the dash for the driving lights. These three wires connect together via a four way bullet connector, with one blue/yellow wire then connecting to the terminal on the switch. A bit confusing, but the photo helps.

Dipper switch wiring

The fuel pump wiring connections were then made. The teal/purple wire from the harness was connected to the black wire at the Facet pump with a spade connector, and the white/purple wire from the harness was connected to the SU pump with a spade connector 

Dual fuel pumps wiring connections

Bugeye Restoration Video Episode Eighty shows the installation of the front and rear harnesses: https://vimeo.com/998221034/30174c4eea?share=copy

The contents of this episode include the following:

0:00 – Braided wiring harness received

0:30 – Begin wiring harness installation

0:58 – Power distribution fuse box

1:48 – Fuse ratings

1:58 – Wiring to Classic Technologies fuse box

2:33 – Wiring clips on the RH engine bay valance

2:40 – Deutsch connector for wiring the bonnet

3:30 – Wiring connections to the horns

5:08 – Horns wiring cover

5:30 – Hydraulic brake switch wiring connected

5:45 – Ignition coil wiring connections

6:05 – Heater blower wiring connections

6:26 – Alternator wires to be connected later

6:32 – Connector “F” wiring to the RH courtesy lights and brake lights

7:30 – Brake pedal brake switch wiring connections

7:55 – Dipper Switch wiring bracket

8:54 – Brake pedal switch wiring tested

9:02 – Accelerator pedal assembly temporary installation

9:20 – Wiper controller installation

9:30 – RH demister elbow and tubing installation

10:30 – Wiring harness to the rear of the car installed

11:18 – Fuel pumps wiring connections

 

 

 

 

 

 

Chapter 84 Week Fifty-Four December 24, 2007

Today (Monday) is Christmas Eve and there is much to be done, so only a little Healey work will happen on this day, but I had a good week. I did manage to install the rubber buffers on the front shroud sill bonnet opening. Three on the left side and two in the right plus the long strip to protect the carbs from the weather. My long strip is cut into two pieces to account for the carb access panel. The buffers are held in place by copper-colored split rivets and flat washersthat are pushed through the mounting hole and then bent over.

LH Rubber Buffers

RH Rubber Buffers 2

LH Carb Panel Seal

The next task was to fit the front wings to the superstructure. I began with the RH wing, thinking it would be the more difficult of the two. First, I tapped the wing clip nuts onto the wings. Three shorter nuts and bolts are used for the front of the wing, below the headlights. With the help of my wife, who held the wing in place, I installed the rearmost and forward most bolts.

With those two holding the wing in position, I then began to install the other bolts working from the front to the rear. Each one was hand tightened enough to get them started, but with enough room to install the wing beading. The fourth nut/bolt from the front requires Houdini to install. I finally accomplished it after loosening each of the four bolts securing the heater blower and then disconnecting the large fresh air hose from the blower. With the hose loose I was able to access the bolt for the fourth hole.

RH Front Wing 1

RH Side with front wing

To protect the paint while installing the beading, I ran a strip of painter’s masking tape on the shroud and the wing parallel to the beading.

Beading Installation

After carefully spreading the beading folding tabs so that they were evenly distributed across the wing, I pressed it in place. Once again, four hands come in handy!

With my wife applying downward pressure on the beading I tightened each bolt/nut until the beading was locked in place and the top of the wing was tight.

Then I tackled the three fasteners below the headlight. These are much easier to access. Again, I loosely attached each of the three and then inserted the two plastic beading pieces between the panels and tightened down.

Next were the three 1/4” x 3/4” long hex head bolts used to secure the bottom edge of the wing. Finally, the 3/8” sheet metal screws were used to fasten the wing flanges to the hinge pillar plate. The heater blower fresh air hose was reinstalled and the blower’s four mounting bolts tightened. A little red touch-up paint on the lower bolts and pillar screw heads and then it was on to the LH wing. NEXT TIME I WOULD WAIT TO FASTEN THE WING AT THE BOTTOM UNITL THE DOOR IS INSTALLED. THERE IS FLEX IN THE WING AND BY MOVING IT UP OR DOWN SLIGHTLY ONE CAN BETTER MATCH UP THE WING CURVATURE WITH THAT OF THE DOOR!

The LH wing was a little easier to install in my case because of the carb access panelI had cut into the shroud! The difficult nuts/bolts on the LH wing were the rearmost two because the wiper motor restricts access to the locating holes and hardware.

It was a good feeling to have all four of the body’s wings in place.

The next task was the installation of the scuttle seals that I had ordered from Bill Bolton. These are reputed to the best available, and the fit does seem to be quite nice. As I was working on the seals and dash pad I had a visit from grandson #2, Shane. As the image shows, he seemed right at home in the Bloody Beast.

Little Shane’s visit to the Garage

Little Shane’s Visit

Fitting the scuttle seals was not as difficult as I expected. The job was made much easier by following directions: Scuttle Seal Install Rich Chrysler along with those provided by Bill Bolton.

Scuttle seal 1

Scuttle seal rivets 1

scuttle seal screw holes

Scuttle seal rivets 2

I then installed the dash pad, along with the hot air outlet defroster masks, the mirror, tonneau turnbuckles, and the stud for the tonneau cover.

Dash Pad seal 1

Dash Pad seal 2

Once the dash and accompanying hardware was installed I was ready to begin the door installation. I first attached the door check strap assembly to each side. Then I taped all the edges of the wings, sills and doors with painter’s masking tape for protection.

Check Strap Assembly 2

Check Strap Assembly 3

My son John (23 years of age and strong) lifted the doors in place and I ran in the door hinge screws. This job was actually easier and less time intensive than I imagined. Of course, I still need to adjust them for proper fit. I had previously attached all the door interior upholstery, trim and hardware which was much easier than installing it all on the car, but it did make the doors quite heavy.

Next on my list was the installation of the headlight buckets, headlight bulbs, and the chrome lens retaining rim. It wasn’t necessary, but I jacked up the front of the car and temporarily removed the splash shields and the tires to give easier access to the rear of the headlight buckets. I experienced a little difficulty with mounting the trim rim but eventually got it to lock into place. Then I secured the parking/flasher light assemblies to the car with the three small machine screws and nuts, and put the clear lens in place.

Headlight installed 1

Headlight installed with lower wing beading

I thought I would check out the fit of the grill and immediately noticed that the horns were preventing the grill from sliding into place. I did not have the original horns and I am using later replacements (these are deeper). I ended up switching the LH and RH units and placing them inside their mounting bracket and this seemed to give me the space I needed for the grill. At some point I would love to find the proper horns!

Horn installed

Now it was on to the tow hook/driving light bracket from Cape International. I bolted the brackets into place and fit the Lucas 570 SLR- 5” driving lights, attached the wiring and tested the lights to find them working beautifully. I had previously installed the light relay, an indicator light and the wiring so that the lights only come on when the bright beams are used.

Auxiliary Driving light bracket and tow hook

My final work for the week was the installation of the three pieces that comprise the front grille. These were fixed to the car without any issue. The splash panel brackets on either side of the car were fastened to the outside grille mounting brackets.

Grille and Lights installed

Side View with both wings and door

Jaguar Electrical Components

In this entry I will identify some, but not all of the major electrical components in the MK2, that are not addressed in their own entry or post.

Electrical System Overview

The Jaguar MK2 being British and a product of the mid-sixties has a positive earth electrical system. The starting system utilized a battery mounted under the bonnet, an ammeter, a starter solenoid on the firewall, a starter motor, a dynamo – commonly referred to as a generator in the U.S., a voltage control box or regulator along with a fuse box consisting of just two fuses, a Lucas ignition coil and a Lucas distributor with manually adjusted points.

My Mk2 has an updated electrical system. I have converted the system to negative ground an have installed a significantly upgraded fuse box and complementary wiring harness.

Alternator

I am installing an alternator in lieu of the original dynamo/generator. The alternator I am using is an Hitachi manufactured by Valeo for the 2004-2008 Nissan Maxima. It produces 120 amps. Detail information:

Hitachi 120 AMP Alternator 

  • Car Quest #11017A
  • Pure Energy # 13940N
  • Hitachi #LR1110710FAM
  • Plug 306
  • 2 1/2” Pulley, 17mm shaft
  • OE Manufacturer: Valeo

I ordered the Connector plug or “pigtail,” from National Quick Start Sales: http://store.alternatorparts.com/partnoc1900.aspx

Part # C1900 Hitachi, Mando, and Mitsubishi Alternator Wiring Repair Plug, Female. Alternator Wiring Harness Repair Connector with 2 Female Terminals

Being Japanese, the mounts for the alternator are obviously metric – and of different sizes! 18mm on rear bolt and 15mm on the front bolt with a 5/8″ wrench on both nuts.

The power input post for the Hitachi alternator is, unfortunately for me, on the top of the alternator when it is mounted to the motor. In this position, the top of the post is only about 1/4″ from the bottom of the steal air conditioner compressor mounting bracket. This can be seen in the image below:

Alternator Power Post

Alternator Power Post

Obviously, this is not a good situation. Bill Rader, owner of Blue Sky Radiator and Electrical came to my rescue! He was able to place an adapter on the alternator that redirected to power post to the rear of the alternator thereby eliminating my problem.

Redirected Power Post on Alternator

Redirected Power Post on Alternator

Battery

To be determined.

Distributor

I had such good fortune with the Dutch “123” electronic distributor in my Big Healey, that I chose to use the same product in the MK2. The Jag does use a different model, number “Jag 6-R-V.” The unit offers 16 different advance-curves, that can be selected via a little switch. Information on the Forums suggests that the #1 or #2 advance curve may be the best to use with the 3.8 Jag motor with total advance of no more than 34 degrees. In our test runs of the engine we did NOT connect the vacuum line to the distributor. I will need to do additional research before settling in on a particular setting.

123 Electronic Distributor

123 Electronic Distributor

 

SPECIFICATIONS
direct. : CCW (topview)
voltage : 4,0-15,0 Volts
range : 500 – 7000 rpm
temperature : -30 to 85 Celsius
coil : stock or High Energy coil
  primary coil NOT below 1,0 ohm
dwell : constant current, fully autom.
time-out : after 1 second current is switched off
spark-bal. : better than 0,5 degr. crankshaft
vacuum : advance starts at 5 inchHg
  stops at 10 degr. @ 10 inchHg
  gearshift retard > 17 inchHg
max.advance : 45 degr. crankshaft
wiring : red = +6V or +12V, black = ‘-‘ coil

 

Installation instructions are available here:

123 JAG6 Distributor Installation Instructions

There is considerable debate in the Jaguar community about the the vacuum advance for the 123 distributor if used on the 3.8 engine. Some say to not connect the vacuum advance, others say to use the ported vacuum advance port on the carburetor, but my friend Mike Gassman, from Gassman Automotive has suggested that performance will be safely enhanced by using direct manifold vacuum. This article  written by a retired General Motors engineer corroborates Mike’s thinking. Ported Vacuum vs Manifold Vacuum.

I am going to try the manifold vacuum for my project and see how the engine performs. I have decided to split the vacuum hose that connects the manifold and the brake reserve tank with a “T” connector. The smaller connection is then routed to the vacuum port on the 123 distributor. If you choose to do this, DO SO AT YOUR OWN RISK! Manufacturers would recommend against doing anything that might compromise braking vacuum but in my opinion, and that of others, the reserve tank provides more than ample vacuum pressure for the braking system.

Vacuum Line to Distributor

Vacuum Line to Distributor

 

Ignition Coil

The original Lucas coil was replaced with a “Flame Thrower”  high output, 3.0 ohm, 40,000 volt, internally resisted unit made by Pertronix, model number 40501. The coil has such a prominent place on the engine that I wanted it to look nice with the polished cam covers. Consequently, I opted to go with the chrome case for the “bling” effect, but it is also available in black.

Pertronix Ignition Coil 40501

Pertronix Ignition Coil 40501

Ignition – Spark Plug Wiring

I elected to purchase a ridiculously expensive assembled wiring conduit kit for Pertronix ignition from XKs Unlimited using 7mm black wire. The spark plug and coil ends are pre-installed.

Spark Plug High Tension Wiring with Conduit

Spark Plug High Tension Wiring with Conduit

Spark Plugs

I am using NGK BPR5ES plugs with a 0.045 gap as recommended by Paul Salt on the Saloon-Lovers Jag Forum for solid wires with no resistors. BP5ES otherwise.

Starter

“High Torque” or “Gear Reduction” starters are available for the MK2 3.8. These starters are considerably smaller and lighter than the original Lucas starter, but more importantly they have considerably more cranking power. The starter can be set up to either use or eliminate the original starter solenoid and I decided to keep the original set-up. I sourced the new starter from SNG Barratt.

SNG Barratt High Torque Starter

SNG Barratt High Torque Starter

The starter is located on the right side of the engine and is secured to the bell housing with two 3/8″-24 x 1/12″ hex head bolts, flat washers and split washers. I am using the original starter solenoid on the firewall so it is necessary to connect the short jumper wire to the + terminal of the starter upon installation. Since it is a bit crowded once the starter is mounted I attached the cable from the starter to the starter solenoid before installation of the starter. A rubber boot was used to cover the terminal. It will be connected to the firewall starter solenoid after the engine is mounted in the car.

Starter Installed on Engine

Starter Installed on Engine

Starter Installed on Engine - Close-up

Starter Installed on Engine – Close-up

 

Starter Solenoid

I am using a new reproduction solenoid. This is an image of a trial fitting of the solenoid on the Weather Protection Flange on the firewall.

Adaptor Plate Assembly for Solenoid and Solenoid Weather Protection Flange

Adaptor Plate Assembly for Solenoid and Solenoid Weather Protection Flange

Upgraded Brake Switch

I had planned to replace the MK2’s original hydraulic brake switch that activates the rear brake lights when the brakes are applied. The hydraulic switches currently available seem to experience a higher than normal failure rate. I encountered this same issue with my Austin-Healey 3000. In the Healey I replaced the hydraulic switch with a plug in the 4-way adaptor and installed a mechanical switch at the brake pedal. The wiring is the same as for the electrical switch. The mechanical switch was sourced from Watson’s Streetworks.

While I purchased the Watson’s switch to use in the MK2, I also found that Ron Francis Wiring sells an updated low pressure hydraulic switch that looks and mounts like the original. I decided to give this switch a try.

Ron Francis Hydraulic Brake Switch SW-32

Ron Francis Hydraulic Brake Switch SW-32

Horns

The horns are located at the front of the car and on either side of the engine compartment immediately below the radiator. My 1964 MK2 was equipped with horn model number WT (Wind Tone) 618U. I media blasted the two horns after stuffing the Flute with paper to avoid getting sand in the workings. I then took the domed covers off the high and low tone horns and painted each horn with POR-15 and overcoated with their spray Blackcoat product. I then sent the horns to E. Lawrie Rhoades, 7 Knollwood Rd, Medfield, MA 02052-2703 to have the electrical mechanism cleaned and tuned. Lawrie is a recognized expert on horn and wiper motor repair.

Horn Assemblies

Horn Assemblies

Horn Internals

Horn Internals

Horn Mounting Brackets

Both of the horn mounting brackets were also media blasted and painted with the POR-15 products. As the Service Manual indicates, the bracket is important in providing a ground to the horn, therefore, “Care should be taken in ensuring a good contact between the earth strap and horn bracket on the left hand horn.”  The horn is  secured to the bracket with two 1/4″ – 28 x  3/4″ hex head bolts with shakeproof washers and 1/4″ – 24 hex head nuts. The bracket is fastened to the bumper bracket with a single 3/8″ -24 x 7/8″ hex head bolt with both a flat washer and a shakeproof washer followed by a 3/8″ – 24 hex nut.

The LH Horn is the Low note horn and the RH Horn is the high note horn.

This image illustrates the connection of the ground wire to the car’s frame. the wire eyelet is fastened to the frame with a 1/4″ – 28 x 1/2″ hex head bolt, shakeproof washer and a 1/4″ -24 hex nut.

Horn Ground Wire

Horn Ground Wire

Horn Mounting Brackets

Horn Mounting Bracket

This image illustrates mounting and orientation of the horns below the radiator:

Horn Orientation

Horn Orientation

Headlamp Dipper Switch

The Headlamp Dipper Switch was in good condition and was cleaned for reuse. The switch is secured to the floorboard with two #10 – 32 x 1 7/8″ hex head bolts through distance pieces with shake proof washers. A rubber cap is pushed over the end of the foot switch.

The upper part of the switch base plate is the shorter side with the mounting screw hole offset to the right. This orientation is instructive for the proper location of the switch wiring on the three terminals. The terminal farthest to the right has the blue/red single wire, the lowest terminal (closest to the floor) has the single solid blue wire, and the left most terminal has two blue/white wires.

Headlamp Dipper Switch

Headlamp Dipper Switch

Dipper Switch Wiring

Dipper Switch Wiring

Headlamp Dipper Switch

Headlamp Dipper Switch

Headlamp Dipper Switch

Headlamp Dipper Switch

Renewed Dipper Switch

Renewed Dipper Switch

Renewed Dipper Switch

Renewed Dipper Switch

 

Direction Indicator/Headlamp Flasher

My MK2 has a Model 85 unit. I cleaned the assembly. The wiring appeared to be in very good condition but the nylon “spring” that catches the arm in the left or right position was broken.

Direction Indicator/Headlamp Flasher Switch

Direction Indicator/Headlamp Flasher Switch

Turn Indicator Flasher Side View

Turn Indicator Flasher Side View

There was a time when Lucas made and sold repair kits to replace the nylon spring. Today they are a challenge to find but they do come up on ebay from time to time. I was able to purchase two of the repair kits. The kit includes the spring and the rivet used to hold the components together.

Lucas Turn Indicator Spring Set

Lucas Turn Indicator Spring Set

Turn Indicator Nylon Spring

Turn Indicator Nylon Spring

To replace the spring one removes two slotted screws from the plastic electrical fitting. This must be done carefully as there are a total of four springs between the aluminum housing and the plastic fitting.

Turn Indicator Springs

Turn Indicator Springs

Once the electrical fitting is removed one has access to the rivet that must be drilled/cut out.

Turn Indicator Disassembly

Turn Indicator Disassembly

Turn Indicator Rivet

Turn Indicator Rivet

It is a tedious and somewhat challenging task to install the new rivet. I actually visited Mike Gassman of Gassman Automotive to help me with the install.

Turn Indicator Rivet

Turn Indicator Rivet

I held the assembly in place over a steel rod while Mike used several punches to get the job done. We didn’t do as well as the factory but we succeeded.

After placing all of the electrical contacts, springs and nylon/plastic components in their proper place one carefully places the black electrical fitting over the assembly and compresses carefully while a friend (spouse) inserts and tightens the two screws that hold the assembly together. This little piece consumed a lot of energy and time, but now functions as new!

Turn Signal Indicator Lights

The MK2 used a short pigtail harness to connect the turn signal switch, the flasher relay and the indicator bulbs located on the steering column. My original harness was in very good condition and will be reinstalled after cleaning. Three warning bulbs are provided in the harness.

Turn Signal and Overdrive Indicator Bulbs, Holders, and Pigtail

Turn Signal and Overdrive Indicator Bulbs, Holders, and Pigtail

The LH bulb for the LH turn signal, the center bulb to indicate overdrive engagement and the RH bulb for the RH turn signal. The two turn signal indicator bulbs are replaced with green BA7 LED micro bayonet bulbs and the overdrive bulb is a clear white BA7. Bulbs were sourced from 4sightautomotive lighting at http://www.bettercarlighting.co.uk. This image shows the original bulb as well as the LED replacement:

2 Watt Liliput Turn Signal Indicator Bulb and Replacement BA7LED Green Micro Bayonet Bulb

2 Watt Liliput Turn Signal Indicator Bulb and Replacement BA7LED Green Micro Bayonet Bulb

I am also using LED flasher bulbs at each of the four corners of the car. Using the LED bulbs requires a LED flasher relay that is incorporated into the Classic Technologies Relay/fuse panel that I am using for my electrical system. The pigtail is held in place by a small bracket located on the backside of the LH Fascia Board Assembly and the bulbs plug into the Upper Switch Cover Assembly at Centre of Steering Wheel.

Turn Signal and Overdrive Indicator Bulbs, Holders, Pigtail and Mounting Bracket on LH Fascia Board Assembly

Turn Signal and Overdrive Indicator Bulbs, Holders, Pigtail and Mounting Bracket on LH Fascia Board Assembly

Overdrive Operating Switch

This switch which activates the electric overdrive is located on the right side of the steering column. Power is derived from fuse position #14 on the CT fuse box. With lever activation a signal is sent to the overdrive interlock, or top gear switch located on the top of the gearbox and then to the overdrive solenoid. A warning indicator bulb is illuminated when the overdrive is engaged.

Switch, on Gearbox Top Cover, Operating Reversing Light and Top Gear for Overdrive Unit

These two switches are identical. As indicated, both are located on the gearbox. I purchased new switches, but found after testing that both original switches worked fine so I left the original switches in place.

Overdrive Interlock or Top Gear Switch at gearbox

Overdrive Interlock or Top Gear Switch at gearbox

Original and New Lucas Overdrive and Reverse Switch

Original and New Lucas Overdrive and Reverse Switch

Oil Pressure Element

The Oil Pressure element or sensor is located directly above the Oil Filter Assembly on the RH side of the cylinder block. I replaced the element with a new Lucas item.Oil Pressure Element

Oil Pressure Element Mounted

Oil Pressure Element Mounted

A Functioning Horn

The Horns

The horn had not worked in the Bugeye since we bought it – not very safe since the bugeye is one of the smallest things on the road. It was time to fix it. The horn itself when tested sounded very weak so I ordered a Hella twin tone horn kit. It came with mounting brackets and a relay for the price of $23.00!

Hella twin note horns

Hella Twin Note Horns

Horn wiring diagram

Horn Wiring Diagram

My horn button is a little different from the original since I have a Moto-Lita wheel, but I ordered a new push pin for it – the 948 Bugeye variety. The pin needs to go into the wheel with the plastic end toward the dash so that the pin is insulated from the body of the aluminum wheel hub. Then the brass sprung pick up on the back of the horn button needs to line up with the pin. The entire assembly then pushes into the wheel hub. A brown wire from the brass contact ring on the dash cone runs to the horn relay.

Horn Button Contact

Horn Button Contact

Steering Hub and Push Pin

Steering Hub and Push Pin

I decided to mount both of the horns on the right front lower side of the frame. That way it was not necessary to run wiring across the frame below the radiator. On one horn I used the original mounting bracket, and on the other I used the supplied brackets and drilled two holes into the fresh air hose mounting assembly. I mounted the relay just above the horns.

Hella Horns Mounting Location

Hella Horns Mounting Location

Horn Relay Mount

Horn Relay Mount

The wiring diagram provided on the box of the horn was helpful. I provided a separate ground wire for each horn. The brown ground wire from the wheel  was connected to terminal #85 on the relay. The green wire form the fuse panel was connected to terminal #86. A red wire was used to connect terminal #87 on the relay to the positive terminal on each horn. This required putting a twin bullet connecter on the wire from the relay to splice a second wire to go the 2nd horn. Finally, a blue wire was run from the non-switched side of the fuse block to the relay terminal #30 to complete the circuit.

The horn now works great! It sounds like the biggest car on the road.

The Rear View Mirror

The rear view mirror in the Bugeye wasn’t the original and it looked a little worse for wear so I replaced it with a new one from Moss. It wasn’t easy to get to the mounting screws because of the rake of the windscreen, so I bent a screw driver with a torch to make a tool that would do the trick. Worked like a charm!

New Rear View Mirror

New Rear View Mirror

New Tool

New Tool

Flashlight

We used to carry a magnetic mounting flashlight under the cowl, but it never stayed very well. We picked up a mounting bracket for a light at VIR and I finally got around to installing it in the car. I selected the left rear mudguard as the location.

Flashlight Mounting

Flashlight Mounting