Preparations for Engine Starting

Getting the engine and gearbox into the car was a big step in the restoration process, but there is still much to be done to get the engine ready to start and the car on the road.

In advance of the engine installation, we put together a check list of items associated with the engine/gearbox that needed to be accomplished. The list is in no particular order. As we completed items we gave ourselves a check mark and it was fun to see the checks start to add up as we got things done.

✅Remove Bonnet – struts and hinges.take the strut off first. before removing the bonnet hinges disconnect the Deutsch connector and the spade connector at the horn.

✅Jack Stands – place the car on jack stands.

✅Engine Hoist Leveler – Remove rocker cover and install leveler on engine.

Engine Mounts – Move rubber buffer from engine stand to the car mount.

✅Starter – Attach the power cable to the starter that will connect to the starter switch later in the process.

Battery Ground cable to firewall – disconnect during engine install.

✅Engine fan –  install six blade fan and spacer. Install fan belt and check tension.

✅Crossbar protector – put the custom-made sheet metal protector over the steering rack crossbar to avoid damaging the paint.

Remove fluids –  from engine, radiator and transmission –

✅Timing marks – make sure these are visible on the pulley before installing the engine.

Driveshaft Prop – Grease the yoke and the transmission splines.

✅Slave cylinder – check threads of the two mounting bolts, should be metric. The threads of the push rod extend beyond the arm by approximately one half inch (6-8 threads showing). The excess on the spacing shim goes to the front of the engine. Find the slightly shortened Allen key for the new cap screws.

Engine Mounts – Install the left-hand engine mount onto the chassis and leave it loose. Install the right hand engine mount onto the engine and leave it loose.

Header – Set the exhaust header in place so that it will be positioned to install once the engine is in place.

✅Engine/transmission install with engine hoist – Check to see if the heater plenum will require modification. Before the assembly is all the way home push the driveshaft yoke into the rear of the transmission.

✅Transmission mount – install the ⅜” – 24 x 3 ½” bolts through the chassis and into the mount and tighten. Next, tighten the front engine mounts.

✅Now center the transmission in the rear mount and tighten the transmission pad mounts.

✅Install the bolts in the sides of the rear mounts from the inside of the car with the self locking nuts inside the tunnel. It may be helpful to tape the nuts in the wrench to make starting the threads easier.

✅RadiatorIt is a little tricky to install. It works best to begin with the upper right (passenger side of the car) mounting point first, then the lower right, followed by the upper left mount and finally the lower left mount. 

✅Radiator hoses – connect and clamp

✅Overflow coolant tank – determine right place for the overflow tank drain line and install a fitting in hose. Connect the radiator overflow to the tank.

✅Alternator – connect the wiring for the alternator.

✅Vacuum pipe – connect the vacuum hose from the distributor to the carburetor.

✅Starter – attach the power cable from the starter to the starter switch.

✅Ignition Coil – attach the wiring to the coil and distributor. Connect the high tension line from the distributor.

✅Oil pressure gauge pipe/hose – connect to engine.

✅Water temperature gauge – connect capillary tube two cylinder head.

✅Heater hose from cylinder head water valve to heater – uses two 10-22 mm jubilee hose clips

✅Heater hose from heater box to copper pipe – 

✅Rocker Cover – install the rocker cover.

✅Breather hose – connect the hoses and clamp

✅Driveshaft – connect and tighten bolts/nuts.

✅Refill fluids in engine, radiator and transmission – transmission requires 2 ¼ pints of Redline MT-90.

✅Remote clutch bleeder valve – connect the remote bleeder stainless steel flexible hose to the bracket on the left side of the heater box.

✅Clutch – Bleed the clutch master and then the slave cylinder. To eliminate all air, the slave cylinder piston should be held in the fully retracted position while bleeding. Do this by running out the adjustable push rod until it is pushing firmly on the clutch fork. Keep the master cylinder reservoir topped up while slowly and gently pumping the clutch size cylinder Into operating position. A power bleeder works well here.

Adjust the push rod length to give some free travel at the clutch pedal. Assure clutch is releasing fully while the vehicle is still up on jack stands. Confirm free play assuring that you can move the clutch operating lever away from the clutch slave cylinder push rod. Finger pressure against the lever should be able to move it against the pressure of the spring inside the Bell housing. Generally 1/4 inch to 1/2 inch of free play measured at the fork will be adequate. Be aware that the clutch pressure plate can be over traveled. If the clutch releases when the pedal is partway down, but then seems to reengage at full pedal down. It is being over traveled. Add free play until this condition disappears.

https://youtu.be/k11eIyfErMY?si=YUO94N5qavN61VFl

Battery ground cable to firewall – reattach.

✅Ground Strap – Attach engine to frame

✅Electric Radiator “Pusher” Fan – see Moss Motors site for directions: https://mossmotors.com/media/instructions/231-658.pdf

✅Intake and Exhaust Manifolds with gasket 

✅Carburetor –  install heat shield, phenolic spacer, gaskets, choke and accelerator cable. Connect fuel hose from pipe to carb. Connect the float bowl overflow hose. Connect the breather hose from the timing chain cover canister to the carb. Connect vacuum hose to distributor. Put ATF in the carb piston. 

K&N Air Cleaner – Install and spray with special oil.

✅Exhaust system – install, exhaust header, exhaust pipes, and muffler.

AFR gauge – connect gauge to the O2 sensor and power.

Gasoline – partially fill fuel tank with gasoline.

Start engine!

Our first step was to install the ground strap that connects the chassis to the engine/gearbox. The strap we used was sourced from Moss Motors. We actually connected the strap to the starter motor bolt that secures the starter to the engine backplate as it is important to have a strong ground connection for the electrical draw of the starter. As with most things in this post, the details are in the Bugeye Restoration Video Episode One Hundred-three.

Ground Strap from chassis to Engine

Our next item was to install the starter motor power cable from the battery post of the starter switch to the starter motor terminal.

We then installed the oil pressure gauge pipe and hose from the gauge to the fitting on the right side of the engine block. Originally this arrangement was just copper pipe but we used a copper fitting and hose supplied by Bugeyeguys. Copper, when it gets old, also becomes brittle and can be subject to breaking and leaking. The rubber hose used in the kit helps to absorb vibration.

Oil Pressure Gauge Pipe and hose fitting kit

Oil Pressure Pipe and Hose

Next, we connected the distributor to the coil wiring. Red wire to the positive terminal on the coil (it is marked) and the black wire to the negative terminal.

Distributor to Coil Wiring

The capillary cable from the water temperature/oil pressure gauge was then connected through several clamps on the right hand engine bay valance to the cylinder head. We believe that fitting to be a 5/8″-18 thread.

Capillary Tube to Cylinder Head

The alternator wiring was then connected. The large red 8AWG wire from the starter switch is connected to one of the large terminals on the alternator. The smaller 18 gauge brown/yellow wire connects the charging warning light in the alternator to the small spade terminal on the alternator.

Alternator Wiring Connections

The heater hose from the water valve on the cylinder head was then installed and connected to the heater box matrix. This hose is pre-bent and in our case was sourced from Bugeyeguys.

Heater hose from water valve

We then moved to the clutch slave cylinder and the installation of the remote bleeder kit purchased from Rivergate Restorations. We did need to add an extra “spacer” fitting (circled in red below) at the master cylinder so that braided hose would clear the edge of the “Sebring” foot box.

Modified Clutch Fitting Assembly

The slave cylinder mounted easy enough but the upper bolt is a real pain to get to once the gearbox is in the car. We used cap screws to make the job a bit easier. A cut-off (shortened) Allen key does the trick.

We fabricated a little bracket to hold the remote bleeder and used the two LH heater box mounting screws to hold it in place. In doing so, we avoided having to make any extra holes in the chassis.

Clutch Remote Bleeder Mounting Bracket

I installed a stainless bleeder valve in the fitting that Rivergate supplied. That was wrong and it leaked! We went back to the two-piece bleeder that Rivergate had supplied and everything was fine. We were able to successfully bleed the clutch system and we had no leaks. Again, this is detailed in the accompanying video.

Correct Bleeder Assembly for Remote Clutch Bleeder

We then mounted the radiator and the 10″ electric fan to the car. This also involved completing the wiring to the fan from the toggle switch below the dashboard. Instructions for wiring and mounting the fan are provided by Moss Motors. Contrary to what we typically see, the black wire from the fan is for power and the blue wire is for ground. Hayden Fan Instructions

The radiator mounts with four 1/4″ hex bolts. It is definitely easier to mount he RH side of the radiator first as seen in the video.

Radiator and Electric Fan Installation

It was then time to mount the gasket and the intake manifold and header to the cylinder head. We also added a new polished stainless steel carb heat shield. The order or sequence of the gaskets between the intake, the heat shield, the phenolic spacer block, the carb and the air cleaner is important. The K&N air filter will be added later after initial tuning of the engine. Lastly, the HIF44 carb was added.

Intake Manifold, Header and HIF44 Installed

We made some stainless steel brackets sourced from McMaster-Carr and added a nut-sert fitting in each to hold the stainless clamps used to support the heater pipe. The original intake manifold had cast fitting for the heater pipe mounting but hose were forfeited with the new Maniflow intake.

Heater Pipe Installed

We then connected the fuel delivery hose, the carb float bowl overflow hose, the breather hose from the timing cover canister, and the vacuum hose from the carb to the distributor.

Hose connections to the HIF44 Carb

HIF 44 Carburetor (RH Side)

We added a little heat protection to the fuel delivery hose with a heat shield wrap from Techflex Thermoshield https://www.cabletiesandmore.com/thermashield-t6-wrap and secured it with four stainless steel zip ties.

Thermotec Hose Covering and Stainless Zip-ties

The coolant recovery tank we had selected did not have an overflow port. We added one by drilling a hole in the top side of the tank with an “R” drill bit. We then tapped the hole with a 1/8″-27 NPT tap and thread in a straight brass fitting and painted it black. We used some clear silicone (opaque) tubing from the radiator to the tank so that we could visually inspect coolant flow and we used some black silicone hose for the overflow.

Coolant Tank Hoses

Next, it was time to put fluids into the Bugeye!

Fluids into the Bugeye

We then installed the wiring for the AFR gauge from the interior to the oxygen sensor. We will only be using the AFR gauge for tuning and therefore it does not require a permanent wiring routing nor a placement of the gauge on or below the the dash.

Details on the forgoing are shown in this video: Bugeye Restoration Video Episode One Hundred-Three.

https://vimeo.com/1088106527/9f6138ea7f?share=copy

The following content is included:

0:00 – Engine ground strap to chassis

1:44 – Starter cable 

2:12 – Oil pressure gauge pipe

2:31 – Distributor and coil wiring

2:46 – Water temperature capillary tube

3:27 – Alternator, wiring connections

4:26 – Heater hose from water valve to heater box

4:44 – Clutch slave cylinder, remote bleeder

5:53 – Clutch bleeding

6:07 – Clutch slave cylinder

7:00 – Radiator

7:50 – Radiator hoses

7:53 – Electrical radiator fan installation

8:40 – Radiator fan wiring

9:50 – Intake manifold and header with gasket

11:05 – HIF44 carburetor

12:25 – Stainless steel carburetor heat shield

12:40 – Copper heater pipe and hose

13:25 – Breather hose from timing chain cover canister to carb

13:50 – Fuel delivery hose and float bowl overflow hose

15:30 – Techflex fuel hose insulation

16:23 – Vacuum hose from carburetor to distributor

16:40 -Coolant recovery tank relief port installation

18:45 – Fluids into the car for the radiator, engine, differential, and gearbox

20:38 – Temporary wiring for the AFR gauge

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dash and Custom Wiring Harness – Part Two

We connected the rear license plate plinth and light.

Final Installation of license plat plinth and Light

This procedure is detailed in Bugeye Restoration Video Episode Eighty-five shows the installation process:

https://vimeo.com/1002052489/b28c484815?share=copy

This is just a matter of connecting the black ground wire to the appropriate terminal in the fixture and connecting the red wire to its terminal in the fixture. This is seen in the image below.

License Plate Light with LEDs

Next we turned to installing the front interior courtesy lights. The front courtesy lights are located in the two footboxes on the outside walls and use the original bonnet prop fixed nuts as mounting points. Small brackets to house the lights were fabricated and painted Cotswold Blue. The lights were sourced from Better Car Lighting in the UK. https://www.bettercarlighting.co.uk/index.php?act=viewProd&productId=171

A purple wire provides power to the LED lights and each is grounded with a black wire next to the light assembly. Operation of the lights is through a remote key fob switch in which case the lights turn on for forty seconds, or via a toggle switch under the dash to leave on until toggled off.

RH Front Courtesy Light

LH Front Courtesy Light

 

Before installing the dash we wanted to complete the installation of the front courtesy lights as they are not easy to access without the dash, much less with dash in place. We also completed the wiring and testing for the pedal brake switch that can also be seen in the photo below.

LH front courtesy light

We then covered the front aluminum cockpit molding with our red vinyl and installed it on the body. It looks quite handsome.

front cockpit molding vinyl covered

Just to add a touch of bling to our work the chrome rear view mirror went on next. Two chrome oval head #10-32 x 5/8″ machine screws secure the mirror to the captured nuts in the body.

Rear View Mirror

We then added the rear cockpit molding:

Rear cockpit molding

We then installed the LH demister hose to the elbow and nozzle vent. We will be using an AFR gauge to assist with tuning but do not plan to leave it in the car permanently so we ran a red wire from fuse position #19 in our fuse box, through the firewall an into the interior. This wire can be easily removed after we finish tuning.

We then began the actual installation of the dash with all of its wiring, gauges, switches and etc. in place. We had seen a tip on the internet to make this task easier. That is to use large zip ties to support the corners of the dash. This allows easy access from above for mating Deutsch connectors, finishing up with a few loose wires and for running cables through the dash and the firewall. As it turned out, it was a great tip and made the job quite a bit easier than it might have otherwise been.

Dash with zip ties to the body

We could then gradually tighten the zip ties and move the dash closer to the body. Ultimately, we cut the zip ties and inserted the 1/4″-28 – 1″ hex head bolts and tightened each corner.

Care must be taken with three items 1. one must keep an eye on the steering shaft so that it remains free in the column bezel. 2. There are two braces under the dash that secure the dash to the firewall. The braces must be above the lip that they mount to on the firewall before the dash to body bolts go in on the corners, otherwise they are difficult to properly position. This is especially true in our case since the braces serve as the platform for our supplementary switch panel behind the dash. 3. Routing the capillary tube for the water temperature gauge and the copper pipe for the oil pressure must be approached cautiously to avoid damage to either.

The installation of the individual items associated with the dash is covered in the attached video. Once we had the dash in place we began testing all of our circuits. Everything seems to functioning properly! A major achievement in the process toward assembling the Bugeye.

Bugeye Restoration Video Episode Eighty-six:

https://vimeo.com/1006256130/a0a01395e3?share=copy

0:00 – Front courtesy lights connected

0:21 – Brake light wiring

1:11 – Covering and installing the aluminum cockpit molding

2:56 – Rear view mirror installed

3:18 – Rear cockpit molding installed

3:50 – LH demister hose installed

4:00 – Temporary AFR gauge wiring installed

4:22- Dash wiring and installation

8:00 – Zip tying the dash to the car

8:47 – Wiper controller rheostat installed

9:07 – Water temperature & oil pressure gauge & pipes installed

10:00 – Windscreen washer pump hoses and wiring connected

10:19 – Brake wiring connected

10:48 – Started cable installed

11:05 – Heater switch installed & wires connected

11:12 – Choke cable installed

11:24 – RH ground bus bar wiring

11:39 – Dash to body mounting bolts and braces

12:08 – Electrical circuit testing begins

 

 

 

 

Odds and Ends

Odds and Ends

This post covers a number of different and varied topics and they are presented in no particular order. 

The Bugeye Restoration Video Episode Seventy-nine covers the full range of items addressed in this post: https://vimeo.com/996056168/94d2be9bab?share=copy

The long list of subjects covered by this video is detailed below:

0:00 – Bonnet rubber buffer installation

0:12 – Firewall rubber grommet installation

0:17 – Jacking point rubber plug

0:24 – RH footbox steering shaft blanking grommet

0:45 – Brake pipes installation completed

2:25 – Power distribution fuse box installation

2:50 – Slave cylinder access rubber plug installation

3:18 – Interior footbox sill rubber plugs installation

3:40 – Windscreen spray jets installation

4:15 – Windscreen washer reservoir and holder installation

4:40 – Windscreen washer hose installation

5:30 – Wiper rack installation

5:48 – Wiper motor installed

6:18 – Firewall aluminum heat insulation installation

6:52 – Anti-rattle rubber pad for wiper rack

8:03 – Wiper motor installed again

9:40 – Fuel filler pipe seal installation

10:28 – Viper ignition coil installation

10:40 – Fan blower and heater box installation

12:59 – RH radiator brace and air duct  installation

13:25 – LH radiator brace installation

13:40 – Demister vents installation

14:18 – Heater vent hinged doors installation

14:47 – Lift-a-dot fastener installation

15:55 – Tenax and turnbuckle fastener installation

18:06 – Self-tapping lift-a-dot fastener installation 

Bits and Bobs

Demister Elbows. We installed a few more items on the car. The demister elbows were a couple of easy items to install.We also installed the demister hose on the RH passenger side of the car just to check fit with the windscreen wiper controller.

Demister elbow

The coolant overflow tank was the next item to mount on the car. It is located on the LH radiator brace. 

Coolant Overflow Tank

We were going to paint the bottle cap a color to signify that the container was for coolant and not a oil catch can, but we found this little sticker to go on the cap that will work just fine.

Coolant cap decal

Then we added the bonnet rubber buffers. These buffers sit on aluminum blocks and are secured to the car with one #10 -32 x 1/2″ machine screws with washers. There is also a steel bushing or spacer inside the rubber buffer to keep it from compressing too much.

Bonnet Rubber Buffers

We then installed our fancy battery box sourced from Speedwell Engineering. A further explanation of the box and the installation process may be seen in a post made under the “Personalizations” category: https://valvechatter.com/?p=14483.

Fancy Box with Positive Cable

It was then time to install the rear license plate body plinth and light. This was a pretty straight forward job with little difficulty with satisfying results. These are the components involved:

Plinth and Lamp

Partial assembly with LED lights:

License Plate Light with LEDs

Final Installation:

Final Installation

Bugeye Restoration Video Episode Eighty-five shows the installation process:

https://vimeo.com/1002052489/b28c484815?share=copy

Our next project was the installation of the front cockpit aluminum trim. In our case the trimis not polished or anodized but instead is covered with vinyl matching the interior. We used contact cement to secure the trim piece to the vinyl and mounted the finished product to the body shell with nine oval head #10-32 x 3/4″ machine screws. The two outside screws will ultimately be used along with a “P” clip to secure the bristle flex trim for the doors openings. 

Vinyl Covered Aluminum Cockpit Trim

Sometimes adding a little chrome bling just needs to be done, so we added our chrome rear view mirror purchased from Bugeye guys. It is fastened to the body with two stainless oval head #10-32 x 1/2″ machine screws.

Rear View Mirror Installed

Continuing the theme of attaching more shiny parts to the car, we mounted the rear cockpit molding. We used chrome oval head #10-32 x 3/4″ and 5/8″ to fasten the strip of aluminum to the body. Unlock nuts were used to keep things tight and in place.

Rear cockpit molding

We want to use our AFR gauge to help with initial tuning after we get the car on the road so we added a temporary red wire parallel to the main harness from fuse position #19 in the Classic technologies relay/fuse box. We will pull out the wire once we have the car running the way we like!

Temporary Red Wire for AFR Gauge

 

 

 

 

 

 

Fire in the Hole

We had planned to run the engine on the starting stand with the gearbox fitted, but thought better of it. First, it would mean that we would have to figure out a way to keep the driveshaft fork in the nose of the gearbox so we would not leak oil out the end. However, more importantly, we wanted to inspect the clutch and the ring gear. So we modified the starting stand to include a mount for the engine rear backplate. 

We then hooked up the choke cable to the carb and we installed a lawn mower throttle cable and slide controller on the control panel and also hooked it up to the carb. These are shown in the video with the link below.

Water was then added to the radiator, Valvoline Racing Oil 20W-50 was added to the engine and some automatic transmission fluid was added to the HIF-44 damper. We then disconnected the coil and spun the engine with the starter until we had oil pressure. After checking ignition timing one more time, and testing for spark at the plugs. It was time to fire it up. It ran pretty well but seemed a bit rich at idle.

After a pause to work on other projects and to wait for parts, we came back to the engine to try to improve the engine’s tuning and to check on the clutch and ring gear.

The clutch had worked just fine but we decided to go ahead and replace the disc and pressure plate since the engine was out of the car. While we were at it, we also made plans to take the flywheel to a machine shop and have the face resurfaced and have the flywheel and clutch pressure plate, or cover, dynamically balanced. That is when things got interesting!

We took the flywheel to Southwest Hydraulics in Venice, Fl for resurfacing, but we got a call from them indicating that the flywheel was “coming apart.” As it turned out the flywheel had been lightened a bt too much and there was very little material between the flywheel lip and the ring gear. See below.

Flywheel delamination

This is going into the trash!

Since they no longer make steel flywheels for the 1275 (aluminum lightened flywheels are available) we searched eBay and located one. It had not been lightened at all which we preferred, but it was not without its problems. One of the clutch cover bolts had been broken off in the flywheel. Fortunately, our friend Randy Forbes came to our aid. Using his milling machine, he first flattened the top of the bolt shaft and then with his drill press using a LH drill bit he was able to remove the broken bolt with no adverse effect. Thank you Randy!

We then took the flywheel back to Southwest Hydraulics for the resurfacing and we also had them replace the ring gear with a new one sourced from A.H. Spares

Flywheel resurfaced

Then it was off to “VAMI” – Venice Auto Marine machine shop where we had the flywheel balanced. Unfortunately, we could not balance the clutch pressure plate with the flywheel because the center hole in the pressure plate was too small to fit on their machine. This should not be a problem as the pressure plate comes balanced by Borg and Beck. The new disc was sourced from Rivergate.

We then reinstalled the flywheel, clutch disc and clutch pressure plate. The flywheel bolts were new and torqued to 4o ft. lbs. A locking tab washer was installed and all the tangs were bent over. The clutch bolts were torqued to 19 ft. lbs.

In the meantime, we replaced the metering needle that came with the carb with a “BDL” needle to get some additional fuel at start up without having to rely so much on the choke. Randy Forbes again came to our aid with the installation of our oxygen sensor.

Oxygen Sensor Bung Installed

Randy doing his thing!

He installed a bung into our new exhaust pipe for the  oxygen sensor so that we could use our newly purchased Innovate Motorsports AFR gauge. This is very helpful in adjusting the fuel mixture at the carb.

Innovate Motorsports AFR Gauge

Before starting the engine a second time we also decided to replace the original-type Lucas starter with the gear reduction starter we had. 

We then started the engine a second time and we were pleased with the changes that had been made. The engine seems to be running well with a static advance of 12 degrees and a full advance of 31 degrees at 3,800 rpm. All of our changes and the first and second running of the engine are included in the Bugeye Restoration Video Episode Sixty. 

https://vimeo.com/953122217/a96f4deab1?share=copy

Episode Sixty includes the following content:

0:35 – Gearbox removal

2:30 – Throttle control

3:35 – Choke cable

4:40 – Engine fluids

6:35 – Priming the oil pump

7:35 – Checking for oil pressure

8:10 – Ignition timing

8:32 – TDC Compression stroke

9:00 – Checking for spark

10:35 – Engine starts!

11:30 – Ignition timing again

12:20 – Marking the distributor setting

12:30 – Gear reduction starter reinstalled

13:10 – Innovate Motorsports AFR gauge

14:08 – Engine running again

14:45 – Engine storage until it goes in the car

The exhaust was then removed along with the intake manifold, the HIF carb, and the exhaust header. This was done because we are sending the exhaust header to Jet-Hot for a ceramic coating. We have now covered the engine and pushed her to the side. The good news which is really too good to believe, and surely will not last, is that we have no oil leaks!

Wow, we started this engine work back in September of 2023. Considerable time has passed but we were continually diverted to work on other parts of the restoration. Other than coating the exhaust header we believe the engine is now complete. Hopefully, by Christmas she will be reunited with the car and it will be as easy as installing the engine and gearbox and taking the car for an initial run!